Slips
Stratosphere Linux IPS
|
Variables | |
parser = argparse.ArgumentParser() | |
help | |
type | |
required | |
default | |
args = parser.parse_args() | |
x | f = lambda x[: args.max_letters] |
df | |
axis | |
how | |
inplace | |
columns | |
indexNames = df[df['state'].str.len() < args.min_letters].index | |
vocabulary = list('abcdefghiABCDEFGHIrstuvwxyzRSTUVWXYZ1234567890,.+*') | |
dict | int_of_letters = {} |
vocabulary_size = len(int_of_letters) | |
int | features_per_sample = 1 |
x_data = df['state'].to_numpy() | |
y_data = df['label'].to_numpy() | |
max_length_of_outtupple = max([len(sublist) for sublist in df.state.to_list()]) | |
padded_x_data | |
train_x_data = padded_x_data | |
train_y_data = y_data | |
num_outtuples = train_x_data.shape[0] | |
timesteps = max_length_of_outtupple | |
tuple | input_shape = (timesteps, features_per_sample) |
model = tf.keras.models.Sequential() | |
loss = history.history['loss'] | |
optimizer | |
metrics | |
history | |
model_file | |
overwrite | |
acc = history.history['accuracy'] | |
val_acc = history.history['val_accuracy'] | |
val_loss = history.history['val_loss'] | |
epochs = range(1, len(acc) + 1) | |
label | |
rnn_model_training.acc = history.history['accuracy'] |
rnn_model_training.args = parser.parse_args() |
rnn_model_training.axis |
rnn_model_training.columns |
rnn_model_training.default |
rnn_model_training.df |
rnn_model_training.epochs = range(1, len(acc) + 1) |
x rnn_model_training.f = lambda x[: args.max_letters] |
int rnn_model_training.features_per_sample = 1 |
rnn_model_training.help |
rnn_model_training.history |
rnn_model_training.how |
rnn_model_training.inplace |
tuple rnn_model_training.input_shape = (timesteps, features_per_sample) |
dict rnn_model_training.int_of_letters = {} |
rnn_model_training.label |
rnn_model_training.loss = history.history['loss'] |
rnn_model_training.max_length_of_outtupple = max([len(sublist) for sublist in df.state.to_list()]) |
rnn_model_training.metrics |
rnn_model_training.model = tf.keras.models.Sequential() |
rnn_model_training.model_file |
rnn_model_training.num_outtuples = train_x_data.shape[0] |
rnn_model_training.optimizer |
rnn_model_training.overwrite |
rnn_model_training.padded_x_data |
rnn_model_training.parser = argparse.ArgumentParser() |
rnn_model_training.required |
rnn_model_training.timesteps = max_length_of_outtupple |
rnn_model_training.train_x_data = padded_x_data |
rnn_model_training.train_y_data = y_data |
rnn_model_training.type |
rnn_model_training.val_acc = history.history['val_accuracy'] |
rnn_model_training.val_loss = history.history['val_loss'] |
rnn_model_training.vocabulary = list('abcdefghiABCDEFGHIrstuvwxyzRSTUVWXYZ1234567890,.+*') |
rnn_model_training.vocabulary_size = len(int_of_letters) |
rnn_model_training.x_data = df['state'].to_numpy() |